Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Brain ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735647

RESUMO

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167033, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280294

RESUMO

Mitochondrial disorders are hallmarked by the dysfunction of oxidative phosphorylation (OXPHOS) yet are highly heterogeneous at the clinical and genetic levels. Striking tissue-specific pathological manifestations are a poorly understood feature of these conditions, even if the disease-causing genes are ubiquitously expressed. To investigate the functional basis of this phenomenon, we analyzed several OXPHOS-related bioenergetic parameters, including oxygen consumption rates, electron transfer system (ETS)-related coenzyme Q (mtCoQ) redox state and production of reactive oxygen species (ROS) in mouse brain and liver mitochondria fueled by different substrates. In addition, we determined how these functional parameters are affected by ETS impairment in a tissue-specific manner using pathologically relevant mouse models lacking either Ndufs4 or Ttc19, leading to Complex I (CI) or Complex III (CIII) deficiency, respectively. Detailed OXPHOS analysis revealed striking differences between brain and liver mitochondria in the capacity of the different metabolic substrates to fuel the ETS, reduce the ETS-related mtCoQ, and to induce ROS production. In addition, ETS deficiency due to either CI or CIII dysfunction had a much greater impact on the intrinsic bioenergetic parameters of brain compared with liver mitochondria. These findings are discussed in terms of the still rather mysterious tissue-specific manifestations of mitochondrial disease.


Assuntos
Mitocôndrias Hepáticas , Doenças Mitocondriais , Animais , Camundongos , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Doenças Mitocondriais/metabolismo , Complexo I de Transporte de Elétrons/metabolismo
3.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260591

RESUMO

DDX1 is a human protein which belongs to the DEAD-box protein family of enzymes and is involved in various stages of RNA metabolism from transcription to decay. Many members of the DEAD-box family of enzymes use the energy of ATP binding and hydrolysis to perform their cellular functions. On the other hand, a few members of the DEAD-box family of enzymes bind and/or hydrolyze other nucleotides in addition to ATP. Furthermore, the ATPase activity of DEAD-box family members is stimulated differently by nucleic acids of various structures. The identity of the nucleotides that the DDX1 hydrolyzes and the structure of the nucleic acids upon which it acts in the cell remain largely unknown. Identifying the DDX1 protein's in vitro substrates is important for deciphering the molecular roles of DDX1 in cells. Here we identify the nucleic acid sequences and structures supporting the nucleotide hydrolysis activity of DDX1 and its nucleotide specificity. Our data demonstrate that the DDX1 protein hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by multiple molecules: single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA molecule, a hybrid of a double-stranded DNA-RNA molecule, and a single-stranded DNA molecule. Under our experimental conditions, the single-stranded DNA molecule stimulates the ATPase activity of DDX1 at a significantly reduced extent when compared to the other investigated RNA constructs or the hybrid double-stranded DNA/RNA molecule.

4.
J Neurotrauma ; 41(1-2): 59-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37551969

RESUMO

Mild traumatic brain injury (mTBI) accounts for 70-90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipid alterations after mTBI, and determine if these changes were associated with clinical outcomes. Patients with mTBI (Glasgow Coma Score [GCS] ≥13 and loss of consciousness <30 min) were recruited. A total of 84 mTBI subjects were enrolled after admission to a level I trauma center, with the majority having evidence of traumatic intracranial hemorrhage on brain computed tomography (CT). Plasma samples were collected within 24 h of injury with 32 mTBI subjects returning at 3 months after injury for a second plasma sample to be collected. Thirty-five healthy volunteers were enrolled as controls and had a one-time blood draw. Lipid metabolomics was performed on plasma samples from each subject. Fold change of selected lipid metabolites was determined. Multivariable regression models were created to test associations between lipid metabolites and discharge and 6-month Glasgow Outcomes Scale-Extended (GOSE) outcomes (dichotomized between "good" [GOSE ≥7] and "bad" [GOSE ≤6] functional outcomes). Plasma levels of 31 lipid metabolites were significantly associated with discharge GOSE using univariate models; three of these metabolites were significantly increased, while 14 were significantly decreased in subjects with good outcomes compared with subjects with poor outcomes. In multivariable logistic regression models, higher circulating levels of the lysophospholipids (LPL) 1-linoleoyl-glycerophosphocholine (GPC) (18:2), 1-linoleoyl-GPE (18:2), and 1-linolenoyl-GPC (18:3) were associated with both good discharge GOSE (odds ratio [OR] 12.2 [95% CI 3.35, 58.3], p = 5.23 × 10-4; OR 9.43 [95% CI 2.87, 39.6], p = 7.26 × 10-4; and OR 5.26 [95% CI 1.99, 16.7], p = 2.04 × 10-3, respectively) and 6-month (OR 4.67 [95% CI 1.49, 17.7], p = 0.013; OR 2.93 [95% CI 1.11, 8.87], p = 0.039; and OR 2.57 [95% CI 1.08, 7.11], p = 0.046, respectively). Compared with healthy volunteers, circulating levels of these three LPLs were decreased early after injury and had normalized by 3 months after injury. Logistic regression models to predict functional outcomes were created by adding each of the described three LPLs to a baseline model that included age and sex. Including 1-linoleoyl-GPC (18:2) (8.20% improvement, p = 0.009), 1-linoleoyl-GPE (18:2) (8.85% improvement, p = 0.021), or 1-linolenoyl-GPC (18:3) (7.68% improvement, p = 0.012), significantly improved the area under the curve (AUC) for predicting discharge outcomes compared with the baseline model. Models including 1-linoleoyl-GPC (18:2) significantly improved AUC for predicting 6-month outcomes (9.35% improvement, p = 0.034). Models including principal components derived from 25 LPLs significantly improved AUC for prediction of 6-month outcomes (16.0% improvement, p = 0.020). Our results demonstrate that higher plasma levels of LPLs (1-linoleoyl-GPC, 1-linoleoyl-GPE, and 1-linolenoyl-GPC) after mTBI are associated with better functional outcomes at discharge and 6 months after injury. This class of phospholipids may represent a potential therapeutic target.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/complicações , Lesões Encefálicas/complicações , Escala de Resultado de Glasgow , Lisofosfolipídeos , Lipídeos , Lesões Encefálicas Traumáticas/complicações , Escala de Coma de Glasgow
5.
Biomedicines ; 11(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137493

RESUMO

Mitochondria are potential targets responsible for some drug- and xenobiotic-induced organ toxicities. However, molecular mechanisms of drug-induced mitochondrial toxicities are mostly unknown. Here, multiple in vitro assays were used to investigate the effects of 22 psychotropic drugs on mitochondrial function. The acute extracellular flux assay identified inhibitors of the electron transport chain (ETC), i.e., aripiprazole, phenytoin, and fluoxetine, an uncoupler (reserpine), substrate inhibitors (quetiapine, carbamazepine, buspirone, and tianeptine), and cytotoxic compounds (chlorpromazine and valproic acid) in HepG2 cells. Using permeabilized HepG2 cells revealed minimum effective concentrations of 66.3, 6730, 44.5, and 72.1 µM for the inhibition of complex-I-linked respiration for quetiapine, valproic acid, buspirone, and fluoxetine, respectively. Assessing complex-II-linked respiration in isolated rat liver mitochondria revealed haloperidol is an ETC inhibitor, chlorpromazine is an uncoupler in basal respiration and an ETC inhibitor under uncoupled respiration (IC50 = 135 µM), while olanzapine causes a mild dissipation of the membrane potential at 50 µM. This research elucidates some mechanisms of drug toxicity and provides some insight into their safety profile for clinical drug decisions.

6.
Sci Rep ; 13(1): 14431, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660191

RESUMO

Some of the prominent features of long-term memory formation include protein synthesis, gene expression, enhanced neurotransmitter release, increased excitability, and formation of new synapses. As these processes are critically dependent on mitochondrial function, we hypothesized that increased mitochondrial respiration and dynamics would play a prominent role in memory formation. To address this possibility, we measured mitochondrial oxygen consumption (OCR) in hippocampal tissue punches from trained and untrained animals. Our results show that context fear training significantly increased basal, ATP synthesis-linked, and maximal OCR in the Shaffer collateral-CA1 synaptic region, but not in the CA1 cell body layer. These changes were recapitulated in synaptosomes isolated from the hippocampi of fear-trained animals. As dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, we examined its role in the increased mitochondrial respiration observed after fear training. Drp1 inhibitors decreased the training-associated enhancement of OCR and impaired contextual fear memory, but did not alter the number of synaptosomes containing mitochondria. Taken together, our results show context fear training increases presynaptic mitochondria respiration, and that Drp-1 mediated enhanced energy production in CA1 pre-synaptic terminals is necessary for context fear memory that does not result from an increase in the number of synaptosomes containing mitochondria or an increase in mitochondrial mass within the synaptic layer.


Assuntos
Consumo de Oxigênio , Sinapses , Animais , Transporte Biológico , Transtornos da Memória , Mitocôndrias
7.
J Neuroinflammation ; 20(1): 158, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403174

RESUMO

BACKGROUND: Inflammation is a fundamental biological response to injury and infection, which if unregulated can contribute to the pathophysiology of many diseases. The vagus nerve, which primarily originates from the dorsal motor nucleus (DMN), plays an important role in rapidly dampening inflammation by regulating splenic function. However, direct vagal innervation of the spleen, which houses the majority of immune and inflammatory cells, has not been established. As an alternative to direct innervation, an anti-inflammatory reflex pathway has been proposed which involves the vagus nerve, the sympathetic celiac ganglion, and the neurotransmitter norepinephrine. Although sympathetic regulation of inflammation has been shown, the interaction of the vagus nerve and the celiac ganglia requires a unique interaction of parasympathetic and sympathetic inputs, making this putative mechanism of brain-spleen interaction controversial. BODY: As neuropeptides can be expressed at relatively high levels in neurons, we reasoned that DMN neuropeptide immunoreactivity could be used to determine their target innervation. Employing immunohistochemistry, subdiaphragmatic vagotomy, viral tract tracing, CRISPR-mediated knock-down, and functional assays, we show that cocaine and amphetamine-regulated transcript (CART) peptide-expressing projection neurons in the caudal DMN directly innervate the spleen. In response to lipopolysaccharide (LPS) stimulation, CART acts to reduce inflammation, an effect that can be augmented by intrasplenic administration of a synthetic CART peptide. These in vivo effects could be recapitulated in cultured splenocytes, suggesting that these cells express the as yet unidentified CART receptor(s). CONCLUSION: Our results provide evidence for direct connections between the caudal DMN and spleen. In addition to acetylcholine, these neurons express the neuropeptide CART that, once released, acts to suppress inflammation by acting directly upon splenocytes.


Assuntos
Neuropeptídeos , Baço , Humanos , Baço/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Nervo Vago , Inflamação/metabolismo
8.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333224

RESUMO

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. PNPLA6 encodes Neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a clinical meta-analysis of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6 -associated clinical diagnoses unambiguously reclassified 10 variants as likely pathogenic and 36 variants as pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship and the generation of a preclinical animal model pave the way for therapeutic trials, using NTE as a biomarker.

9.
Genes (Basel) ; 14(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37372373

RESUMO

X-linked retinoschisis (XLRS) is the most common juvenile macular degeneration in males. Unlike most other X-linked retinal dystrophies, carrier heterozygous females are very rarely reported to show clinical features of the disease. Herein, we describe unusual retinal features in a 2-year-old female infant with family history and genetic testing consistent with XLRS.


Assuntos
Retinosquise , Feminino , Humanos , Proteínas do Olho/genética , Fenótipo , Retina/patologia , Retinosquise/genética , Retinosquise/patologia , Inativação do Cromossomo X/genética , Pré-Escolar
10.
Invest Ophthalmol Vis Sci ; 64(6): 3, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126360

RESUMO

Purpose: The purpose of this study was to evaluate the epidemiology, etiology, clinical assessment, investigation, management, and visual consequences of high myopia (≤-6 diopters [D]) in infants and young children. Findings: High myopia is rare in pre-school children with a prevalence less than 1%. The etiology of myopia in such children is different than in older children, with a high rate of secondary myopia associated with prematurity or genetic causes. The priority following the diagnosis of high myopia in childhood is to determine whether there is an associated medical diagnosis that may be of greater overall importance to the health of the child through a clinical evaluation that targets the commonest features associated with syndromic forms of myopia. Biometric evaluation (including axial length and corneal curvature) is important to distinguishing axial myopia from refractive myopia associated with abnormal development of the anterior segment. Additional investigation includes ocular imaging, electrophysiological tests, genetic testing, and involvement of pediatricians and clinical geneticists is often warranted. Following investigation, optical correction is essential, but this may be more challenging and complex than in older children. Application of myopia control interventions in this group of children requires a case-by-case approach due to the lack of evidence of efficacy and clinical heterogeneity of high myopia in young children. Conclusions: High myopia in infants and young children is a rare condition with a different pattern of etiology to that seen in older children. The clinical management of such children, in terms of investigation, optical correction, and use of myopia control treatments, is a complex and often multidisciplinary process.


Assuntos
Miopia , Humanos , Lactente , Pré-Escolar , Criança , Miopia/diagnóstico , Refração Ocular , Olho , Testes Visuais , Biometria
11.
Ophthalmic Genet ; 44(5): 486-490, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36420660

RESUMO

PURPOSE: To describe a case of primary coenzyme Q10 deficiency in a child manifesting as early-onset renal failure, retinal dystrophy, and optic atrophy leading to progressive vision loss. METHODS: Clinical presentation and workup including visual fields, electroretinogram, and optical coherence tomography are presented. Genetic testing was performed. RESULTS: An eight-year-old female with nephropathy requiring renal transplantation subsequently developed progressive cone-rod dystrophy and optic atrophy. The patient had negative results on a targeted next-generation sequencing retinal dystrophy panel but whole-exome sequencing revealed two variants in COQ2 (likely biallelic), consistent with a diagnosis of primary coenzyme Q10 deficiency. CONCLUSIONS: Primary coenzyme Q10 deficiency is a rare disorder with variable systemic and ocular findings; there is also genetic heterogeneity. Genetic testing aids in the diagnosis of this condition, and variants in the COQ2 and PDSS1 genes appear to have the strongest association with ocular manifestations. Oral supplementation of coenzyme Q10 may slow progression of disease. This case highlights the utility of whole-exome sequencing in the diagnosis of a rare syndromic form of ocular disease and reports a novel phenotypic association for this condition.


Assuntos
Atrofia Óptica , Distrofias Retinianas , Criança , Feminino , Humanos , Ubiquinona/uso terapêutico , Ubiquinona/genética , Testes Genéticos , Distrofias Retinianas/genética , Campos Visuais , Eletrorretinografia , Atrofia Óptica/genética , Mutação , Tomografia de Coerência Óptica
12.
Toxicology ; 485: 153412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584908

RESUMO

There is increasing evidence that links mitochondrial off-target effects with organ toxicities. For this reason, predictive strategies need to be developed to identify mitochondrial dysfunction early in the drug discovery process. In this study, as a major mechanism of mitochondrial toxicity, first, the inhibitory activity of 35 compounds against succinate-cytochrome c reductase (SCR) was investigated. This in vitro study led to the generation of consistent experimental data for a diverse range of compounds, including pharmaceutical drugs and fungicides. Next, molecular docking and protein-ligand interaction fingerprinting (PLIF) analysis were used to identify significant residues and protein-ligand interactions for the Qo site of complex III and Q site of complex II. Finally, this data was used for the development of QSAR models using a regression-based approach to highlight structural and chemical features that might be responsible for SCR inhibition. The statistically validated QSAR models from this work highlighted the importance of low aqueous solubility, low ionisation, fewer 6-membered rings and shorter hydrocarbon alkane chains in the molecular structure for increased inhibition of SCR, hence mitochondrial toxicity. PLIF analysis highlighted two key residues for inhibitory activity of the Qo site of complex III: His 161 as H-bond acceptor and Pro 270 for arene interactions. Currently, there are limited structure-activity models published in the scientific literature for the prediction of mitochondrial toxicity. We believe this study helps shed light on the chemical space for the inhibition of mitochondrial electron transport chain (ETC).


Assuntos
Citocromos c , Ácido Succínico , Succinato Citocromo c Oxirredutase/metabolismo , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Complexo III da Cadeia de Transporte de Elétrons , Ligantes , Mitocôndrias/metabolismo
13.
Biochim Biophys Acta Bioenerg ; 1864(2): 148947, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481273

RESUMO

The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.


Assuntos
Doenças Mitocondriais , Oxirredutases , Animais , Camundongos , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina , Mamíferos/metabolismo
14.
Hum Mol Genet ; 32(4): 595-607, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36084042

RESUMO

The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.


Assuntos
Distrofias Retinianas , Humanos , Mutação , Linhagem , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sequenciamento Completo do Genoma , Equipe de Assistência ao Paciente , Análise Mutacional de DNA/métodos , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
15.
PLoS Pathog ; 18(12): e1011024, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538568

RESUMO

Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX). This mitochondrial terminal respiratory oxidase is absent from the human host, and hence is a potential target for the development of new antimicrobial agents. Here we present experimental evidence for the mitosomal localization of AOX in the microsporidian Trachipleistophora hominis and demonstrate that it has an important role during the parasite's life cycle progression. Using a recently published methodology for synchronising T. hominis infection of mammalian cell lines, we demonstrated specific inhibition of T. hominis early meront growth and replication by an AOX inhibitor colletochlorin B. Treatment of T. hominis-infected host cells with the drug also inhibited re-infection by newly formed dispersive spores. Addition of the drug during the later stages of the parasite life cycle, when our methods suggest that AOX is not actively produced and T. hominis mitosomes are mainly active in Fe/S cluster biosynthesis, had no inhibitory effects on the parasites. Control experiments with the AOX-deficient microsporidian species Encephalitozoon cuniculi, further demonstrated the specificity of inhibition by the drug. Using the same methodology, we demonstrate effects of two clinically used anti-microsporidian drugs albendazole and fumagillin on the cell biology and life cycle progression of T. hominis infecting mammalian host cells. In summary, our results reveal that T. hominis mitosomes have an active role to play in the progression of the parasite life cycle as well as an important role in the biosynthesis of essential Fe/S clusters. Our work also demonstrates that T. hominis is a useful model for testing the efficacy of therapeutic agents and for studying the physiology and cell biology of microsporidian parasites growing inside infected mammalian cells.


Assuntos
Proteínas Fúngicas , Oxirredutases , Animais , Humanos , Proteínas Fúngicas/metabolismo , Oxirredutases/genética , Estágios do Ciclo de Vida , Mamíferos
16.
Invest Ophthalmol Vis Sci ; 63(9): 14, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35947379

RESUMO

Purpose: Autosomal dominant cone rod dystrophy 7 (CORD7) was initially linked to the gene RIMS1 and reported in a 4-generation British family in 1998. The purpose of this study was to investigate the legitimacy of this association, and to correctly characterize the genetic cause of this condition. Methods: The allele frequency of RIMS1 c.2459G>A, p.Arg820His, was investigated in the Genomes Aggregation Dataset (gnomAD) datasets and whole genome sequencing (WGS) was performed for 4 members of the CORD7 family with filtering of rare pathogenic variants in a virtual gene panel comprising all genes known to be associated with inherited retinal dystrophy (IRD). Cytogenetic analysis was performed to rule out interchromosomal translocation. Results: RIMS1 p.Arg820His has a maximal carrier frequency of >1:5000 in Europeans. A previously well-characterized PROM1 variant: c.1118C>T, p.Arg373Cys, was detected in 9 affected members of the CORD7 family who underwent WGS or direct sequencing. One affected family member is now known to have macular dystrophy in the absence of RIMS1 p.Arg820His. Clinical analysis of affected family members and 27 individuals with retinopathy associated with the same - PROM1 - variant showed consistent phenotypes. Conclusions: The case for pathogenicity of RIMS1 p.Arg820His is not strong based on its presence on 10 alleles in the gnomAD dataset and absence from additional CORD affected individuals. The finding of a known pathogenic variant in PROM1 correlates well with the phenotypic characteristics of the affected individuals, and is likely to account for the condition. Clear evidence of association between RIMS1 and a retinal dystrophy is yet to be described.


Assuntos
Distrofias de Cones e Bastonetes , Distrofias Retinianas , Antígeno AC133/genética , Alelos , Distrofias de Cones e Bastonetes/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Distrofias Retinianas/genética , Retinose Pigmentar
17.
J Physiol ; 600(21): 4623-4632, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908243

RESUMO

Inherited retinal degenerations such as retinitis pigmentosa (RP) affect around one in 4000 people and are the leading cause of blindness in working age adults in several countries. In these typically monogenic conditions, there is progressive degeneration of photoreceptors; however, inner retinal neurons such as bipolar cells and ganglion cells remain largely structurally intact, even in end-stage disease. Therapeutic approaches aiming to stimulate these residual cells, independent of the underlying genetic cause, could potentially restore visual function in patients with advanced vision loss, and benefit many more patients than therapies directed at the specific gene implicated in each disorder. One approach investigated for this purpose is that of optogenetics, a method of neuromodulation that utilises light to activate neurons engineered to ectopically express a light-sensitive protein. Using gene therapy via adeno-associated viral vectors, a range of photosensitive proteins have been expressed in remaining retinal cells in advanced retinal degeneration with in vivo studies demonstrating restoration of visual function. Developing an effective optogenetic strategy requires consideration of multiple factors, including the light-sensitive protein that is used, the vector and method for gene delivery, and the target cell for expression because these in turn may affect the quality of vision that can be restored. Currently, at least four clinical trials are ongoing to investigate optogenetic therapies in patients, with the ultimate aim of reversing visual loss in end-stage disease.


Assuntos
Degeneração Retiniana , Adulto , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , Optogenética/métodos , Terapia Genética/métodos , Visão Ocular
18.
Ophthalmol Retina ; 6(12): 1130-1144, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35781068

RESUMO

PURPOSE: To evaluate the safety and efficacy of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin (RS1), in individuals with retinal disease caused by mutations in the RS1 gene. DESIGN: Open-label, phase I/II dose-escalation clinical trial. SUBJECTS: Twenty-two adults and 5 children with X-linked retinoschisis (XLRS), aged 10 to 79 years, were enrolled. METHODS: The participants received an intravitreal (IVT) injection of rAAV2tYF-CB-hRS1, at 1 of 3 dose levels, in the poorer-seeing eye and were followed up for a minimum of 1 year after treatment. MAIN OUTCOME MEASURES: The primary safety measures were local (ocular) or systemic (nonocular) adverse events (AEs) during the 12-month period after study agent administration. Efficacy was assessed based on measures of best-corrected visual acuity (BCVA), schisis cavity volume, static perimetry visual field testing, and electroretinography (ERG). RESULTS: The IVT administration of rAAV2tYF-CB-hRS1 was generally safe at each of the dose levels. There were no AEs resulting in early termination, and no dose-limiting toxicities were reported. The most common ocular AEs observed were related to ocular inflammation (blurred vision, visual impairment, and the presence of vitreous cells, keratic precipitates, vitreous floaters, anterior chamber cells, and vitreous haze). Ocular inflammation was generally either mild or moderate in severity and responsive to standard immunosuppressive therapy, except in 3 participants (all in the highest-dose group) who developed chronic uveitis, which required prolonged therapy. Two patients experienced retinal detachments. There was no overall improvement in BCVA, visual fields, or ERG in the study eye compared with that in the fellow eye for any dose group. Variable changes in the cystic cavity volume over time were similar in the study and fellow eyes. CONCLUSIONS: Gene augmentation therapy with rAAV2tYF-CB-hRS1 for XLRS was generally safe and well tolerated but failed to demonstrate a measurable treatment effect. The clinical trial is ongoing through 5 years of follow-up to assess its long-term safety.


Assuntos
Retinosquise , Adulto , Criança , Humanos , Dependovirus/genética , Proteínas do Olho/genética , Vetores Genéticos , Inflamação , Injeções Intravítreas , Retina , Retinosquise/diagnóstico , Retinosquise/genética , Retinosquise/terapia
19.
Biochem J ; 479(12): 1337-1359, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35748702

RESUMO

Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.


Assuntos
Agroquímicos , Proteínas Mitocondriais , Agroquímicos/farmacologia , Animais , Drosophila/metabolismo , Segurança Alimentar , Humanos , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases , Preparações Farmacêuticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Methods Mol Biol ; 2497: 291-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771450

RESUMO

The ubiquinone (Q) pool represents a node in the mitochondrial electron transport chain (ETC) onto which the electrons of all respiratory dehydrogenases converge. The redox state of the Q pool correlates closely with the electron flux through the ETC and is thus a parameter of great metabolic value for both the mitochondrial and cellular metabolism. Here, we describe the simultaneous measurement of respiratory rates of isolated mouse heart mitochondria and the redox state of their Q pool using a custom-made combination of a Clark-type oxygen electrode and a Q electrode.


Assuntos
Mitocôndrias Cardíacas , Ubiquinona , Animais , Transporte de Elétrons , Camundongos , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...